Main training function.
train(negatives, positives, prelist, postlist, field, count, copyrange, pcut, minpublic, updateProgress = NULL)
negatives | Dataframe of sequence frequencies in negative samples. |
---|---|
positives | Datafram of sequence frequencies in positive samples. |
prelist | Vector of negative training samples. |
postlist | Vector of positive training samples. |
field | String containing the column or columns (space-delimited) of interest. |
count | String containing the column name for colontype counts. |
copyrange | Integer Vector of the min and max copy of a sequence, within a sample, to be considered. |
pcut | P-value threshold for fisher-exact test. |
minpublic | Sequence frequency threshold to be considered. |
updateProgress | Function for updating a progress bar in a Shiny interface. |
List containing both negtive (n) and positive (v) clonotype percentages.
FIELD <- "vGeneName aminoAcid jGeneName" COUNT <- "copy" P_CUTOFF <- 0.1 MIN_PUBLIC <- 2 COPY_RANGE <- "1 99" listPos <- tsvDir(system.file("extdata", "Post", package="iCAT")) listNeg <- tsvDir(system.file("extdata", "Pre", package="iCAT")) naive <- readTrn(listNeg, FIELD, COUNT, COPY_RANGE, "naive") vaccs <- readTrn(listPos, FIELD, COUNT, COPY_RANGE, "vacc") mod <- train(naive, vaccs, listNeg, listPos, FIELD, COUNT, COPY_RANGE, P_CUTOFF, MIN_PUBLIC, NULL)